skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Wolf, Jason"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sherratt, Emma; Wolf, Jason (Ed.)
    Abstract Reciprocal selection between extended and somatic phenotypes is an active area of investigation. Recent research on the influence of web-building on somatic evolution in spiders has produced conflicting results, with some finding no effect of web use on somatic evolution and others showing significant effects. These studies differed in focus, with the former surveying general anatomical traits and the latter concentrating on somatic systems with significant functional roles in prey capture. Here we propose and test the hypothesis that prey immobilization by webs is broadly synergistic with cheliceral biting force and that web builders have lower cheliceral forces compared to free hunters. Our analysis focused on the intercheliceral (IC) sclerite and muscles, a newly characterized system that is synapomorphic and ubiquitously distributed in spiders. Using µCT scans, we quantify IC sclerite shape and model IC muscle function. Statistical analyses show that inferred size-corrected isometric muscle force is lower in web-builders than in free hunters. No such association was found for IC sclerite shape. In the investigation of reciprocal selective effects between extended and somatic phenotypes, our results highlight the importance that these traits be functionally linked and adaptive. 
    more » « less
    Free, publicly-accessible full text available November 26, 2025
  2. Taylor, Scott; Wolf, Jason (Ed.)
    Abstract Hybridization offers insight into speciation and the forces that maintain barriers to reproduction, and hybrid zones provide excellent opportunities to test how environment shapes barriers to reproduction and hybrid fitness. A hybrid zone between the killifish, Fundulus heteroclitus and Fundulus grandis, had been identified in northeastern Florida, although the spatial structure and parameters that affect the distribution of the two species remain unknown. The present study aimed to determine the fine-scale spatial genetic patterns of the hybrid zone to test the hypothesis that species ranges are influenced by changes in dominant vegetation and to determine how differences in reproductive barriers between the two species influence the observed patterns. The area of overlap between the two species spanned ~37 km and showed a mosaic pattern of hybridization, suggesting the spatial structure of the hybrid zone is largely influenced by the environment. Environmental association analysis, however, suggested that while dominant vegetation had a significant influence on the spatial structure of the hybrid zone, a combination of environmental factors was driving the observed patterns. Hybridization tended to be rare at sites where F. heteroclitus was the more abundant species, suggesting that differences in preference for conspecifics can lead to differences in rates of introgression into parental taxa and likely result in a range-shift as opposed to adaptation in the face of climate change. 
    more » « less
    Free, publicly-accessible full text available November 8, 2025
  3. Ashby, Ben; Wolf, Jason (Ed.)
    Abstract Emerging infectious diseases threaten natural populations, and data-driven modeling is critical for predicting population dynamics. Despite the importance of integrating ecology and evolution in models of host–pathogen dynamics, there are few wild populations for which long-term ecological datasets have been coupled with genome-scale data. Tasmanian devil (Sarcophilus harrisii) populations have declined range wide due to devil facial tumor disease (DFTD), a fatal transmissible cancer. Although early ecological models predicted imminent devil extinction, diseased devil populations persist at low densities, and recent ecological models predict long-term devil persistence. Substantial evidence supports the evolution of both devils and DFTD, suggesting coevolution may also influence continued devil persistence. Thus, we developed an individual-based, eco-evolutionary model of devil–DFTD coevolution parameterized with nearly 2 decades of devil demography, DFTD epidemiology, and genome-wide association studies. We characterized potential devil–DFTD coevolutionary outcomes and predicted the effects of coevolution on devil persistence and devil–DFTD coexistence. We found a high probability of devil persistence over 50 devil generations (100 years) and a higher likelihood of devil–DFTD coexistence, with greater devil recovery than predicted by previous ecological models. These novel results add to growing evidence for long-term devil persistence and highlight the importance of eco-evolutionary modeling for emerging infectious diseases. 
    more » « less
  4. Araya-Ajoy, Yimen Gerardo; Wolf, Jason (Ed.)
    Abstract The process of reproductive character displacement involves divergence and/or the narrowing of variance in traits involved in species recognition, driven by interactions between taxa. However, stabilizing sexual selection may favor stasis and species similarity in these same traits if signals are optimized for transmission through the prevailing environment. Further, sexual selection may promote increased variability within species to facilitate individual recognition. Here we ask how the conflicting selection pressures of species recognition and sexual selection are resolved in a genus of Himalayan birds that sing exceptionally similar songs. We experimentally show that small differences in two traits (note shape and peak frequency) are both necessary and sufficient for species recognition. Song frequency shows remarkable clinal variation along the Himalayan elevational gradient, being most divergent where species co-occur, the classic signature of reproductive character displacement. Note shape shows no such clinal variation but varies more between individuals of an allopatric species than it does among individuals within species that co-occur. We argue that the different note shapes experience similar transmission constraints, and differences produced through species interactions spread back through the entire species range. Our results imply that reproductive character displacement is likely to be common. 
    more » « less